

University of Rome "Tor Vergata"

Physical Activity & Health Promotion 2020/2021

Diabetes Mellitus

Dr.ssa Katia Andreadi

Diabetes Mellitus (DM)

DM eventually → microvascular and macrovascular complications

- -Microvascular: retinopathy, nephropathy, and peripheral neuropathy
- -Macrovascular: coronary heart disease (CHD), stroke, and peripheral vascular disease (PVD)

Glucose Contributions to HbA_{1c}

$HbA_{1c} =$

Fasting Glucose, Influenced by:

- Hepatic glucose production
- Hepatic sensitivity to insulin

Postprandial Glucose, Influenced by:

- ❖ Preprandial glucose
- **❖** Glucose load from meal
- Insulin secretion
- Insulin sensitivity in peripheral tissues and liver

Possible Pathogenesis of Diabetic Complications

Overall Glycemic Control (HbA_{1c})

Type 1 Diabetes

Absolute deficiency in insulin β-cell destruction

Type 1 Diabetes Mellitus

- Characterized by absolute insulin deficiency
- Pathophysiology and etiology
 - Result of pancreatic beta cell destruction
 - Prone to ketosis
 - Total deficit of circulating insulin
 - Autoimmune
 - Idiopathic

Autoimmune Type 1 Diabetes

- Beta cells destroyed via autoimmune mechanism.
- Genetically predisposed people:triggering factor = production of islet cell Ab.
- Islet cell Ab destroy Beta cells.
- Insulin production decreases.

Autoimmune Type 1 Diabetes

- Viruses + other environmental agents have been shown to be triggering factors.
- Viruses can damage beta cells by:
 - 1. Direct invasion.
 - 2. Triggering an autoimmune response.

Autoimmune Type 1 Diabetes

- Implicated viruses:
 - mumps, intrauterine rubella, coxsackie B virus, echo virus, gytomegalo virus and herpes virus.
- <u>Chemical substances that reduce diabetes:</u> alloxan, streptozotosin and dietary nitroamides.

Idiopathic Type 1 Diabetes

- No known aetiology.
- Permanent insulinopaenia.
- This form is strongly inherited.
- Not HLA associated.

Epidemiology

- Average onset is in childhood or early adulthood (usually before 30 years of age)
- Characterized by autoimmune destruction of pancreatic βcells → absolute insulin deficiency
- Patients dependent on exogenous insulin

Incidence of Type 1 diabetes

- ✓ Incidence peaks at 11-13 years.
- ✓ Seasonal variation: lowest rates in spring and summer.
- ✓ Geographical variation: Japan has a very low incidence.
- √ 10% of Type 1 diabetics are over 65 years of age.

Type of Diabetes in Youth by Race/Ethnicity and Etiology

SEARCH for Diabetes in Youth Study (N=2291)

AA, African American; AI, American Indian; API, Asian/Pacific Islander; IR, insulin resistant; IS, insulin sensitive; NHW, non-Hispanic white.

Pathophysiology

- \triangleright Immune-mediated destruction of pancreatic β cells
- > Certain antibodies detected in blood:
- Islet cell antibody (ICA)
- Glutamic acid decarboxylase (GAD65) antibody
- Insulin autoantibody (IAA)
- ➤ HLA-DR3 and HLA-DR4 as well as DQA and DQB genes are strongly associated with type 1 DM
- > Strong familial genetic link

Type 1 Diabetes Pathophysiology

- β-cell destruction
 - Usually leading to absolute insulin deficiency
- Immune mediated
- Idiopathic

Inflammation

Autoimmune Reaction

β-cell Destruction

Pathophysiologic Features of Type 1 Diabetes

- Chronic autoimmune disorder
 - Occurs in genetically susceptible individuals
 - May be precipitated by environmental factors
- Autoimmune response against
 - Altered pancreatic β-cell antigens
 - Molecules in β -cells that resemble a viral protein
- Antibodies
 - Approximately 85% of patients: circulating islet cell antibodies
 - Majority: detectable anti-insulin antibodies
 - Most islet cell antibodies directed against GAD within pancreatic β -cells

Autoimmune Basis for Type 1 Diabetes

3-Cell mass

Models for Pathogenesis of T1D

Models for Pathogenesis of T1D

Models for Pathogenesis of T1D: Fertile Field Hypothesis

How Type 1 Diabetes Might Arise

Insulin and Glucose Metabolism

Major Metabolic Effects of Insulin

- Stimulates glucose uptake into muscle and adipose cells
- Inhibits hepatic glucose production

Consequences of Insulin Deficiency

• Hyperglycemia → osmotic diuresis and dehydration

Diagnostic Elements

- **✓ DKA**
- ✓ Symptoms of diabetes and a casual plasma glucose ≥ 200 mg/dl
- √ Fasting Plasma Glucose (FPG) ≥ 126 mg/dl
- √ Impaired Fasting Glucose (IFG)
- 2-h plasma glucose ≥ 200 mg/dl after an OGTT
- These criteria should be confirmed by repeat testing on a different day

Clinical features of Type 1 diabetes.

- Presents acutely. Symptoms due to hyperglycaemia (thirst, polyuria, tiredness, weight loss).
- Ketone production abdominal pain, nausea and vomiting.
- Other symptoms: blurred vision, repeated infections.
- ❖ No chronic complications at diagnosis, may only be apparent 5-10 years post diagnosis.

Pharmacotherapeutic Goals

Glycemic Controls	
HbA1c	<7 – 6.5%
Pre-prandial capillary plasma	90 – 130 mg/dL
Post prandial capillary plasma	<180 mg/dL

Desired Outcomes

- ✓ Reduce risk for microvascular and macrovascular complications
- ✓ Reduce mortality
- √ Achieve glycemic control
- √ Improved quality of life

Medical Nutrition Therapy

Nutrient	Recommended Intake
Carbohydrate	50-60% of total calories
Protein	15-20%
Totale fat	25-35%
Saturated fat	< 10 (<7 % in dyslipidemia)
Polyunsaturated fat	10 %
Mono unsaturrated fat	up to 20%
Cholesterol	< 300 mg/dL (<200 mg/dl in dyslipidemia)
Total calories	Asjust based on age, weight and height

Pharmacotherapy in Type 1 DM

The primary therapy for type 1 DM is insulin therapy

Four basic forms of insulin:

- Rapid-acting
- Short-acting
- Intermediate-acting
 - Long-acting

Faster aspart, fast-acting insulin aspart; NPH, neutral protamine Hagedorn

^{*}Schematic representation T1D, type 1 diabetes; T2D, type 2 diabetes Adapted from Home. *Diabetes Obes Metab* 2015;17:1011–20

Mobile App

Venerdì

Superiore/inferiore ad avviso

set 25 2017 - ott 01 2017

Sabato

Giovedì

Intervallo target

set 02 2017 - ott 01 2017

Glucosio rilevato dal sensore Pasto

Insulina Superiore/inferiore limite avviso

Effect of Flash Glucose Monitoring Technology on Glycemic Control and Treatment Satisfaction in Patients With Type 2 Diabetes

https://doi.org/10.2337/dc18-0166

Marianna Yaron, ^{1,2} Eytan Roitman, ¹ Genya Aharon-Hananel, ¹ Zohar Landau, ^{1,2,3} Tali Ganz, ³ Ilan Yanuv, ⁴ Aliza Rozenberg, ⁴ Moshe Karp, ¹ Maya Ish-Shalom, ^{1,2} Joelle Singer, ^{1,2} Julio Wainstein, ^{1,2,3} and Itamar Raz^{1,4}

Reduction of A1c by more than 0.5% A1C and by more than 1.0% A1c.

Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

https://doi.org/10.2337/dci19-0028

For age <25 yr., if the A1C goal is 7.5%, then set TIR target to approximately 60%. (See Clinical Applications of Time in Ranges section in the text for additional information regarding target goal setting in pediatric management.)

[†] Percentages of time in ranges are based on limited evidence. More research is needed.

[§] Percentages of time in ranges have not been included because there is very limited evidence in this area. More research is needed. Please see *Pregnancy* section in text for more considerations on targets for these groups.

^{*} Includes percentage of values >250 mg/dL (13.9 mmol/L).

^{**} Includes percentage of values <54 mg/dL (3.0 mmol/L).

Insulin Adverse Reactions

- ➤ Lipoatrophy: loss of fat at injection site due to antibody formation leading to breakdown of fat in the area of injection (need to rotate sites!)
- ➤ Hypertrophy: increase in fat mass at the site, the area is anesthetized, however leads to erratic insulin absorption
- ➤ Resistance: require large amounts of insulin to get desired effect, due to antibody formation

Insulin Adverse Reactions

- Foods that will provide 10g of carbs:
- cup of orange juice or soda
- Sugar: 2 teaspoons or 2 cubes
- Glucose tablets: 2-4 tablets
- Apple juice: 1/3 cup
- Foods to avoid
- Ice cream, candy bars, cookies, cakes
- Complex carbs slowly absorbed
- If unconscious: Glucagon 1mg SQ, IM, or IV and Dextrose 50% 50ml infusion

Hormonal Responses to Exercise (non-diabetic)

Hormonal Responses to Exercise (diabetic using insulin)

Insulin Adjustment Based on Timing and Duration

	Activity Within 2 Hours After Meal	Activity Before or Between Meals
Short Duration (<90 Minutes)	V Mealtime Bolus	Snack Prior to Activity

Insulin Adjustment Based on Timing and Duration

	Activity Within 2 Hrs After Meal	Activity Before or Between Meals
Long Duration (>90 Minutes)	 ✓ Mealtime Bolus ✓ Basal Rate Snack at regular intervals Watch for delayedonset hypoglycemia 	Snack Prior to Activity

Insulin Adjustments

Meal Bolus Adjustment

(for post-meal activity)

Low Intensity Cardio

4 25%

► Mod. Intensity Cardio

¥ 33%

► High Intensity Cardio

↓ 50%

► Competitive/Anaerobic ???

Insulin Adjustments

Basal Adjustment

(for > 90 min. activity)

- ► CSII: Basal rate 50% starting 1 hr pre-activity, or:
- ► CSII: Disconnect 1-hr prior, but reconnect hourly and bolus 50% of usual basal rate

(for day-long activity)

- ► CSII: **V** basal 50% daytime, 25% nighttime
- ► Shots: basal insulin 25%

Artificial Pancreas Device Systems for the Closed-Loop Control of Type I Diabetes: What Systems Are in Development?

Journal of Diabetes Science and Technology 2016, Vol. 10(3) 714–723
© 2015 Diabetes Technology Society © PREPRINTS and permissions: sagepub.com/JournalsPermissions.nav DOI: 10.1177/1932296815617968 dstsagepub.com

Sara Trevitt, BSc, PhD¹, Sue Simpson, BSc, PhD¹, and Annette Wood, MB, BCh, FFPH¹

Figure 1. The 6 developmental stages of artificial pancreas device systems (copyright JDRF).5

Published in: Sara Trevitt; Sue Simpson; Annette Wood; J Diabetes Sci Technol 10, 714-723.

DOI: 10.1177/1932296815617968

Copyright © 2015 Diabetes Technology Society